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LE’ITER TO THE EDITOR 

Plane rotor with time-varying magnetic flux: implications 
for the bound-state Aharonov-Bohm effect 

Donald H Kobe 
Department of Physics, North Texas State University, Denton, Texas 76203, USA 

Received 1 June 1982 

Abstract. The time-dependent Schrodinger equation is solved exactly for an electron 
constrained to a circular orbit concentric with a cylinder of smaller radius containing 
magnetic flux changing in time. The average kinetic angular momentum and energy are 
changed by the induced electric field in such a way as to satisfy Ehrenfest’s theorem. The 
kinetic angular momentum and energy eigenvalues depend on the instantaneous enclosed 
flux. 

The Aharonov-Bohm (AB) effect (Aharonov and Bohm 1959) has recently been 
criticised as being a mathematical artifact (Bocchieri and Loinger 1978, 1980), which 
is obtained by the imposition of improper boundary conditions. The experimental 
verification of the effect (Chambers 1960, Boersch et a1 1961, Bayh 1962, Jaklevic 
et a1 1965, Matteucci and Pozzi 1978) has putatively been explained in terms of 
‘leakage flux’ and stray magnetic fields (Bocchieri et a1 1979, 1980, Roy 1980). 
Although the effect is widely accepted (Wu and Yang 1975, Greenberger 1981, Kobe 
1979), there are still differing interpretations of it (Strocchi and Wightman 1974). 

A simple model (Merzbacher 1962) which exhibits the AB effect for bound states 
is a plane rotor, an electron confined to a circular orbit, which is concentric with a 
cylinder of smaller radius containing magnetic flux (Peshkin 198 la). When periodic 
boundary conditions are imposed on the wavefunction, the energy eigenvalues are 
changed in a way that depends on the enclosed flux. Flux quantisation can be obtained 
by demanding that the energy spectrum with flux present is the same as without flux. 
Byers and Yang (1961) point out that the dependence of the energy levels on the 
flux when the electron is not in a magnetic field is based on the same principle as 
discussed by Aharonov and Bohm (1959, 1963). This AB effect for bound states has 
also been criticised as being unphysical (Bocchieri and Loinger 1981). If the wavefunc- 
tion is incorrectly allowed to have a discontinuous phase, the AB effect can be made 
to disappear (Bocchieri and Loinger 1978, 1980) so that the energy eigenvalues are 
the same as in the absence of flux. 

In order to understand the nature of the AB effect better, the plane rotor with 
time-varying magnetic flux (Peshkin et a1 1961, Peshkin 1981b, Wilczek 1982, Weiss- 
kopf 1961) is considered in this paper. When the flux is initially zero, the wavefunction 
is periodic and single valued. When the flux in the cylinder changes, the electron 
experiences an induced electric field by Faraday’s law. The induced electric field exerts 
a torque on the electron and changes its kinetic angular momentum. The induced 
electric field also does work on the electron and changes its energy. At a given time 
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the energy of the electron depends on the instantaneous flux in the cylinder. The 
change in the kinetic angular momentum and energy of the electron is a necessary 
consequence of Ehrenfest’s theorem (Yang 1976). When the magnetic flux becomes 
constant, the static bound-state AB effect is obtained. The time-dependent model 
therefore explains how the eigenvalues of the energy operator evolve from the state 
of no flux to the state of constant flux. 

An electron is constrained to a circular orbit of radius a which is concentric with 
an infinitely long cylinder of smaller radius b containing magnetic flux @(t)  which in 
general depends on the time t. The problem is described in cylindrical coordinates 
(p ,  8,z). For this geometry the magnetic induction vector B is in the z direction, 

B = B ( t ) u ( b  - p ) $  (1)  

where u ( x )  is the unit step function which is zero for negative argument and unity 
for positive argument. When the flux @(t)  changes in time, Faraday’s law, EMF = - h / c ,  
gives an induced electric field 

E@ = -h/2.rrpc p > b .  (2) 

A@, t )  = @ ( t ) ( 2 x b 2 ) - l [ ( b 2 / p ) ~ @  - b )  + p u ( b  -p ) ]& .  

A vector potential A which gives the magnetic induction in equation (1) from B = V X A 
is? 

13) 

By Stokes’ theorem the flux is 

where C = as is a curve surrounding the cylinder and d a  is an element of area. The 
electric field E is 

( 5 )  

where q5 is the scalar potential. For the electric field in equation (2) to be obtained 
from equations ( 5 )  and (3), the scalar potential must satisfy q5 = 0. 

For the vector potential given in equation (3) and for 4 = 0, the time-dependent 
Schrodinger equation for an electron of mass m and charge q constrained to a circular 
orbit of radius a >b is 

(h2/2ma2)(  -ia/ae -0 (t)124 = iha$/at (6) 

0 ( t )  = q@(t)/2.rrhc. (7)  

E = -v4 - aA/a(ct) 

where the dimensionless arbitrary function of time a (t)  is 

The initial conditions at time t = 0 are taken to be zero flux a (0) = 0 and a periodic 
wavefunction $(e, 0) = ( 2 ~ ) ~ ” ~  exp(inO), where n is an integer. 

To solve this time-dependent equation, the eigenvalue problem for the energy 
operator (Yang 1976) shall first be solved. The energy operator in this gauge is the 
same as the Hamiltonian in equation (6), since the scalar potential is zero (Kobe and 
Smirl 1978). The energy operator eigenvalue problem is 

(8) (h2/2ma 2)(-ia/ae - (Y (t)>*4, = E ,  (t)vt, 

t Other vector potentials which are gauge equivalent to equation ( 3 )  can be used, but then a non-zero 
scalar potential is also needed. The gauge invariance of this problem is discussed elsewhere. 
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where the time t is treated as a parameter. The solution to this eigenvalue problem 
is the periodic eigenfunction 

(9) 

which is normalised on (0,27r) and n = 0, *l, *2, *3, . . . . There is no time depen- 
dence in $,, in equation (9) so it automatically satisfies the initial-state condition. The 
eigenvalue in equation (8) is 

$,,(e, t )  = (27r)-”2 exp (in@) 

e , ( t )  = (n - ( ~ ( t ) ) ~ h ~ / 2 m a ~  (10) 

which exhibits the dependence of the energy eigenvalue on the flux (Merzbacher 
1962). The flux in equation (8) can have any arbitrary time dependence, and does 
not have to vary adiabatically. The periodic eigenfunction $,, in equation (9) is used, 
instead of one having a discontinuous phase (Bocchieri and Loinger 1978, 1980, 
1981), in order that Ehrenfest’s theorem is satisfied. 

The solution to the Schrodinger equation in equation (6) is 

if the flux is zero at time zero and $(e, 0) = $,,(e, 0). At time zero the energy in 
equation (10) is ~ ~ ( 0 )  = n2h2/2ma2. The wavefunction develops in time from 4(6,0) 
to equation (1 1) and the expectation value of the energy operator is given in equation 
(10). 

If the flux reaches a constant value @(T) for times t > T, the energy eigenvalue in 
equation (10) is a constant. The bound-state AB effect for a static field is seen to 
emerge naturally from the solution to the time-dependent Schrodinger equation. 
Dirac’s quantisation condition (Dirac 1931, 1948) for electric charge q and magnetic 
charge g is obtained by setting (Y (T) equal to an integer and @ = 47rg. 

To show more physically that the solution given in equations (9)-(11) is correct, 
consider Ehrenfest’s theorem in a form given by Yang (1976). The kinetic angular 
momentum operator is (Feynman 1962) 

L = r X m v  (12) 
since mu = (p -qA/c)  is the kinetic momentum operator (Yang 1976). The kinetic 
angular momentum in the z direction is L, = p (Pe - qAe/c) = h(-ia/a@ - (Y (t)). The 
average z component of the kinetic angular momentum in the state 4 given by equation 
(11) is 

(4(t)lW(t)) = h(n --(y ( t ) ) .  (13) 

d(4lL24)ldt = ( 4 b Z 4 )  (14) 

The time rate of change of the average kinetic angular momentum is 

by Ehrenfest’s theorem (Yang 1976). The z component of the torque operator 
7, = (r xqE) ,  = qpEe is (Peshkin et a1 1961, Peshkin 1981b, Wilczek 1982) 

T2 = -h&(t) (15) 
by equations (13), (7) and (2). The torque operator in equation (15) is independent 
of the coordinates. Thus, no matter how far away the electron is from the axis, it 
experiences the same torque. If equation (14) is integrated, the result is equation (13), 



L546 Letter to the Editor 

since the flux at the time zero is zero and the angular momentum at time zero is 
($.(O)ILZ$(ON = n h t .  

The energy operator 8 in equation (8) is 

8 = L y 2 I  (16) 

where L is given by equation (12) and the moment of inertia I = ma2. The expectation 
value of $9 in the state r/, in equation (11) is given in equation (10). The time rate of 
change of the expectation value of 8 satisfies Ehrenfest’s theorem 

d($I%$)/dt = (91(Lz/I)~z$L) (17) 

by equations (13) and (15). The right-hand side of equation (17) is the power supplied 
to the electron by the induced electric field and is equal to the average of the quantum 
power operator (Yang 1976, Kobe et aE 1982) P = (4/2)(u - E + E  * U), where U = 
( p - q A / c ) / m  is the velocity operator. If equation (17) is integrated from 0 to t, 
equation (10) is obtained since at time zero the energy is (nh)*/21. The dependence 
of the energy eigenvalues on the flux follows from the energy conservation requirement. 

In conclusion, I have solved the problem of an electron in a circular orbit which 
is outside a cylinder with time-varying magnetic flux. As the magnetic field is turned 
on, an induced electric field from Faraday’s law exerts a torque and does work on 
the electron. The eigenvalues of the z component of the kinetic angular momentum 
and the energy operators thus depend on the instantaneous flux in such a way that 
Ehrenfest’s theorem is satisfied. The torque is independent of the distance from the 
axis, so an electron experiences the same torque regardless of where it is. When the 
magnetic flux becomes static, the energy and kinetic angular momentum eigenvalues 
depend on the enclosed flux in the same way as for the static AB effect. This result 
demonstrates that the quantum state of the electron is independent of its past history 
(Bohm and Hiley 1979). 

I should like to thank Dr K-H Yang for helpful discussions. 
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